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16.1 INTRODUCTION

A multistep physicochemical approach making use of plasma technology combined 
with wet chemistry has fueled considerable interest in delivery of surface-active anti-
adherence materials. In the first step of the approach, concerning an inherent lack of 
befitting functional groups on pristine substrate, plasma treatment at low temperature 
and atmospheric pressure has been substantiated to be productive in yielding reactive 
entities on the surface [1,5]. The highlights the functionality of the adopted multi-
step physicochemical approach to bind polysaccharide species onto the medical-grade 
PVC surface. DCSBD plasma is capable of raising roughness, surface free energy, and 
introducing oxygen-containing functionalities anchored onto the surface. A structured 
poly(acrylic acid) brush of high graft density is synthesized using surface-initiated 
approach to further improve hydrophilicity and develop a stable brush-like assembly 
to yield a platform for biomolecular binding. In vitro bacterial adhesion and biofilm 
formation assays indicate incapability of single chitosan layer in hindering the adhe-
sion of Staphylococcus aureus bacterial strain. Chitosan could retard Escherichia coli 
adhesion and plasma treated and graft copolymerized samples are found effective to 
diminish the adherence degree of Escherichia Coli.

A new modifi cation method using plasma technology combined with wet chemis-
try represents an effi cient way in delivery of surface-active anti-adherence materials 
[1-4]. The  atmospheric pressure electric discharge plasma has been substantiated to 
be productive in yielding reactive entities on the surface [5,6]. However, the need for 
treatment duration to a few seconds remains a pressing obstacle to extensive applica-
tions of this type of plasma [7]. A novel technology coined as diffuse coplanar surface 
barrier discharge (DCSBD) has been developed [8], which enables the generation of a 
uniform plasma layer under atmospheric pressure with a high surface power density in 
the very close contact of modifi ed polymer. 

16.2 EXPERIMENTAL

• Materials: PVC pellets, extrusion medical-grade RB1/T3M of 1.25 g·cm-3 den-
sity, were obtained from ModenPlast (Italy) and used as received. Pectin from 
apple, (BioChemika, with esterification of 70-75%), acrylic acid (AA) (99.0%, 
anhydrous), and N-(3-dimethyl aminopropyl)-N′-ethyl carbodiimide hydrochlo-
ride (EDAC, 98.0%) were supplied by Fluka (USA). Chitosan from crab shells 
with medium molecular weight and deacetylation degree of 75-85%.

• Plasma Modification: It was implemented in static conditions by DCSBD plas-
ma technology (Figure 1) of laboratory scale with air as the gaseous medium at 
atmospheric pressure and room temperature. A schematic profile of the plasma 
system is given in Scheme 1. It basically comprises a series of parallel metallic 
electrodes inset inside a ceramic dielectric located in a glass chamber which 
allows the carrier gases to flow. All samples were treated on both sides with 
plasma power of 200 W for 15 sec.
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SCHEME 1 Scheme of DSBD plasma source.

For grafting by AA PVC substrates were immersed into spacer solutions contain-
ing 10 vol.% AA aq. solution. The reaction was allowed to proceed for 24 hr at 30ºC. 
PAA grafted PVC samples were immersed into EDAC aq. solution at 4ºC for 6 hr in 
order to activate the carboxyl groups on the surface. The highly active key intermedi-
ate, O-acylisourea, is produced having potential to react with reducing agents. Subse-
quently, they were transferred to chitosan and kept there for 24 hr at 30ºC.

Sample 1 – pristine PVC, sample 2 –PVC treated by DCSBD plasma, sample 3 – 
PVC treated by plasma and grafted by AA, sample 4 – PVC treated by plasma, AA and 
chitosan, sample 5 – PVC treated by plasma AA, chitosan and pectin.

Scanning electron microscopy (SEM) was carried out on VEGA II LMU (TES-
CAN) operating in the high vacuum/secondary electron imaging mode at an accelerat-
ing voltage of 5–20 kV.Bacterial adhesion and biofi lm experiments were performed 
using gram-positive (S. Aureus 3953) and gram-negative (E. Coli 3954) bacteria. The 
circular shape specimens (d ≈ 8mm) were cut from the pristine and modifi ed PVC 
samples before further investigation. After 24 hr incubation at 37ºC under continuous 
shaking at 100 rpm. The bacteria adhered on the surface of the specimens were 
removed by vigorous shaking of the test tube at 2000 rpm for 30 sec and quantifi ed by 
serial dilutions and spread plate technique.

16.3 DISCUSSION AND RESULTS

16.3.1 SURFACE ENERGY

Table 1 includes the contact angle values of deionized water (θw) recorded on different 
samples. Each sample has been designated by a number from 1 to 5 whose notation 
is inserted in the title of Table 1. Based on the given data, sample 1 exhibits a hydro-
phobic characteristic which after being treated by plasma, an evident change in θw 
arises and hydrophilicity ascends as anticipated. This trend continues as to sample 3 on 
which polyacrylic acid (PAA) chains are grafted where more hydrophilic propensity is 
shown inferred from θw value. The elevated hydrophilicity upon multistep modifica-
tions is assumed to come from the inclusion of superficial hydrophilic entities. The 
hydrophilicity then decreases as polysaccharides are coated onto the surface, though is 
well higher than that of sample 1, as the inherent hydrophilicity of chitosan is beyond 
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doubt. Furthermore, sample 5 exhibits higher wettability than sample 4 implying a 
more effective binding of chitosan onto the surface, as remarked in other efforts as 
well. The hydrophilicity then decreases as polysaccharides are coated onto the surface, 
though is well higher than that of sample 1, as the inherent hydrophilicity of chitosan is 
beyond doubt. Furthermore, sample 5 exhibits higher wettability than sample 4 imply-
ing a more effective binding of chitosan onto the surface, as remarked in other efforts 
as well. 
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To further explore the physicochemical parameters of the examined surfaces, an 
extensively used theory, Lifshitz-van der Waals/acid-base (LW/AB), has been exploit-
ed for free surface energy evaluation whose outputs with reference to diiodomethane, 
ethylene glycol, and deionized water as wetting liquids are supplied in Table 1. Sample 
1 exhibits a basic character (γ->γ+) as proposed by the data, even though acidity or 
basicity of neat PVC is yet controversial.

 This increase is principally assisted by the polar (acid-base) component (γAB), rather 
than the apolar one (γLW), implying an incorporation of superfi cial polar oxygen-contain-
ing entities thanks to the air plasma treatment. A signifi cant rise in γtot and γAB values is 
noticed for sample 3, in comparison with samples 1 and 2, indicative of the presence of 
carboxyl-containing units on the surface. As for samples 4 and 5, a reduction in γAB and 
γtot values is observed compared to sample 3, however, their γtot values rise above that of 
sample 1. The minimum values of θE and θF are found for sample 5 which refl ect that the 
surface is seemingly coated by alcoholic and amine containing moieties which in fact 
points to the more effi cient binding of chitosan when compared to sample 4.

16.3.2 SURFACE MORPHOLOGY

The surface topography of samples 1–5 investigated by SEM as a common surface 
qualitative technique are presented in Figure 2. Sample 1 shows a level and uniform 
morphology which goes through a signifi cant alteration ensuing the plasma treatment 
taking on an etched pattern with an unevenly shaped texture. The generated morphol-
ogy is favorable for next coupling processes due to an enhanced surface area and 
roughness. The developed pattern on sample 2 is indeed, an outcome of the competing 
functionalization and ablation phenomena which brings on a reorganization of the 
surface microstructure.

Sample 1 Sample 2

Sample 3
FIGURE 1 Continued
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  Sample 4 Sample 5
FIGURE 1 SEM micrographs of samples 1–5 taken at 3 × 104

 magnification.

The incident of the ablation is validated by gravimetric analysis where a weight 
loss of 4 μg·cm-2 has been observed due to the plasma treatment for 15 sec implying 
an approximate etching rate of 2 nm/s in terms of the used PVC grade density. Based 
on the sample 3 micrograph, PAA chains develop superfi cial domains of submicron 
dimension and brush-like features are then recognizable on the surface. As the graft-
ing moves forward, clustering takes place because of the domains size growth. An 
additional compelling factor in controlling the surface microstructure is the grafting 
mechanism which is actually initiated by generated surface radicals.

16.3.3 SURFACE CHEMISTRY XPS ANALYSIS

XPS, with a probe depth measuring around 5 nm, has been put to use to more thor-
oughly monitor the bearings of the surface modifications by picking up a quantitative 
perception into the surface elemental composition. The recorded survey spectra along 
with the corresponding surface atomic compositions and ratios of samples 1-5 are all 
provided in Figure 4. Carbon (C), oxygen (O), chlorine (Cl), and silicon (Si) elements 
are found on the sample 1 surface whose composition and elemental ratios are present-
ed in the legend of the respective graph. The Cl2p atomic content is substantially lower 
than the amount found for a neat PVC containing no additives which refers to the exis-
tence of several additives and also X-ray degradation. The same rationale accounts for 
the considerable amount of O1s detected in sample 1 which is not a typical element in 
standard PVC.Upon binding chitosan on the surface (sample 4), pronounced changes 
appear in the surface chemistry, as O1s content and O/C fraction increase and also 
N1s signal emerges, while Cl2p and Si2p bands abate due to the surface coverage by 
polysaccharide species. This trend yet continues for sample 5 as higher O1s and N1s as 
well as O/C and N/C atomic rations are detectable compared to sample 4 giving sup-
port to the notion that chitosan can be more stably, i.e. in higher quantity, attached onto 
the surface when layered along with pectin. In other words, use of pectin can promote 
the quality of chitosan binding.
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FIGURE 2 XPS survey-scan spectra of samples 1-5 along with atomic compositions.

BACTERIAL ADHESION AND BIOFILM ASSAY

The most crucial step of the biofilm formation is bacterial adhesion considered as a so-
phisticated topic in biointerface science whose plenty of aspects have not yet been well 
conceived. As a matter of fact, adhesion phenomenon is an interplay of myriad factors. 
Figure 5 shows the histograms of bacterial adhesion extent for samples 1-5 after 24 h in-
cubation. As Regards the adherence degree of S. aureus onto the samples 2-4, no reduc-
tion is evident in the number of viable adhered colonies, compared to sample 1, signify-
ing an inability of the modifications in hampering the S. aureus adhesion to the surface. 
From sample 1 to 3, both hydrophilicity and roughness rise, as remarked earlier, and 
then decrease in the case of samples 4 and 5. The adhesion degrees vary with a similar 
trend as well. Considering sample 5, it is inferred that chitosan/pectin assembly imparts 
biocidal effects against S. aureus. Chitosan single layer and chitosan/pectin multilayer 
restrain the adherence degree by 50% and 20%, respectively. Chitosan/pectin multilayer 
is found to be effective against both gram-positive and gram-negative strains which can 
be translated as a higher quality of chitosan coating when it is applied along with pectin.
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FIGURE 3 Histograms of bacterial adhesion degree for samples 1-5 after 24 h incubation  
against two microorganisms.

16.4 CONCLUSION

The DCSBD plasma is capable of raising roughness, surface free energy, and introduc-
ing oxygen-containing functionalities anchored onto the PVC surface. A structured 
PAA brush of high graft density is synthesized using surface-initiated approach to 
further improve hydrophilicity and develop a stable brush-like assembly to yield a 
platform for biomolecular binding. In vitro bacterial adhesion and biofilm formation 
assays indicate incapability of single chitosan layer in hindering the adhesion of S. au-
reus bacterial strain, while up to 30% reduction is achieved by chitosan/pectin layered 
assembly. On the other hand, chitosan and chitosan/pectin multilayer could retard E. 
coli adhesion by 50% and 20%, respectively. Furthermore, plasma treated and graft 
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copolymerized samples are also found effective to diminish the adherence degree of 
E. coli.
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